This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Acylphosphonic Derivatives - New Precursors for Low Coordination Phosphorus Species

E. Breuer^a; R. Karaman^a; H. Leader^{ab}; A. Goldblum^a; R. Moshe^a

^a Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, Israel ^b Israel Institute of Biological Research, Ness-Ziona, Israel

To cite this Article Breuer, E. , Karaman, R. , Leader, H. , Goldblum, A. and Moshe, R.(1987) 'Acylphosphonic Derivatives - New Precursors for Low Coordination Phosphorus Species', Phosphorus, Sulfur, and Silicon and the Related Elements, 30:1,113-116

To link to this Article: DOI: 10.1080/03086648708080535 URL: http://dx.doi.org/10.1080/03086648708080535

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ACYLPHOSPHONIC DERIVATIVES - NEW PRECURSORS FOR LOW COORDINATION PHOSPHORUS SPECIES

E.BREUER, * R.KARAMAN, * H.LEADER, * A.GOLDBLUM, * AND R.MOSHE

Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, Israel, and Israel Institute of Biological Research, Ness-Ziona, Israel

Although dialkyl acylphosphonates (1) have been known for over four decades, their dealkylated derivatives, namely acylphosphonic acids (2) and alkyl hydrogen acylphosphonates (3), have only been isolated as salts. Characterization of compounds of type 2 and 3 have not been previously reported, neither have

their chemical and physical properties been described. In this paper we wish to describe some new chemical properties of these types of compounds.

Methods for mono-2 and didealkylation of dialkyl acylphosphonates have been described by several groups. We found that salts obtained by these methods can be converted to the free acids of type 2 and 3, which can be characterized by spectral methods.

Thermal and acid catalyzed fragmentation of acylphosphonates. Methyl hydrogen acylphosphonates (3, R' = Me) are stable compounds at ambient temperature, however upon heating they are converted, in nearly quantitative yield, to the corresponding methyl carboxylates (equation 1). Similarly

R = phenyl or n-hexyl

acylphosphonic acids yield carboxylic acids upon heating.

As this behavior is different from that shown by acylphosphonate esters (1), that are thermally stable, it was
assumed that the fragmentation is acid catalyzed. Indeed it
was found that dimethyl acylphosphonates (1, R' = R" = Me) also
give methyl carboxylates, under the influence of protic or
Lewis acids, in neat form, or in aprotic solvents. Furthermore
we discovered, that heating a benzene solution of equimolar
amounts of acylphosphonate and p-toluenesulfonic acid, results
in the formation, in high yield, of the methyl carboxylate and
methyl p-toluenesulfonate. This reaction is visualized as
shown in equation 2.

The stoichiometry of these reactions requires the formation of phosphenous acid (HOPO) or its ester. Indeed the formation of this species, in the thermal decomposition of methyl hydrogen benzoylphosphonate (3, R = Ph, R' = Me), could be demonstrated recently by high resolution mass spectrometry.

Base catalyzed C-P bond cleavage in acylphosphonic derivatives. Dialkyl acylphosphonates (1) suffer fast hydrolytic cleavage of the C-P bond, which can be catalyzed either by base or by acid. We found that methyl hydrogen benzoylphosphonate (3, R = Ph, R' = Me) is stable at pH 8.5 at room temperature, but it hydrolyses to benzoic acid at higher pH. In comparison, benzoylphosphonic acid (2, R = Ph), though stable at pH 7.4, hydrolyses rapidly at pH 8.5 to a hitherto unidentified, phosphorus containing product. A similar trend is exhibited by oximino derivatives. Methyl hydrogen oximinobenzylphosphonate (5a) is stable at room temperature for 24 hours at pH 14; in contrast, oximinobenzylphosphonic acid (4) is rapidly converted to benzonitrile, in high yield, at pH 7.4, with the putative formation of monomeric metaphosphate anion (equation 3).

Acid catalyzed and thermal fragmentation of mono- and

dimethyl oximinophosphonates. Dialkyl acylphosphonates (1) react with hydroxylamine, as ketones do, to yield oximes. When the application of this reaction was attempted with alkyl hydrogen acylphosphonates (3), the formation of nitriles, in high yields was observed. Furthermore it was found that dissolution of methyl hydrogen oximinobenzylphosphonate (5a) in alcoholic hydrogen chloride solution results in the formation of benzonitrile and methyl alkyl phosphate, (equation 4) both in high yields. This novel phosphorylation reaction can be

OMe H⁺/R'OH R'OH

Ph—C P=O
$$\longrightarrow$$
 + H₂O + Ph—CN + MePO₃ \longrightarrow MeR'HPO₄ (4)

NOR

OH

Sa

(R' = Me, Et, i-Pr, or t-Bu)

(5a, R = H; 5b, R = Me)

rationalized by assuming, that compound 5a first undergoes fragmentation to monomeric methyl metaphosphate, which is captured subsequently by the solvent. Moreover, while the oxime methyl ether of 5a behaves similarly to 5a, the related dimethyl ester, 5b, is inert under these conditions. However, we found that heating 5b with equimolar amounts of p-toluenesulfonic acid in benzene, results in the formation of benzonitrile and methyl p-toluenesulfonate in high yields. This reaction can be rationalized by assuming that the fragmentation of 5b is promoted both by protonation of the N-OH group and by nucleophilic attack of the tosylate anion upon the O-Me group, again with the putative formation of monomeric methyl metaphosphate.

Finally, it is worthy of note that oximinophosphonates undergo also thermal fragmentation, in the absence of acids. Thus refluxing 5b in benzene, or heating it in the neat form, leads to the formation of benzonitrile and dimethyl phosphate in high yields. The fragmentation of the corresponding oxime methyl ether: dimethyl methoximinobenzylphosphonate proceeds considerably slower, also yielding benzonitrile and, in this case, trimethyl phosphate.

Quantum mechanical calculations of the benzoylphosphonates and of the products of their protonation were carried out with semiempirical MNDO⁸ with hydrogen bonding correction, which was recently improved to account for multiple hydrogen bonding. The preferred conformation of the parent derivatives is one in which the C=O and the P=O groups are

trans oriented, with the cisoid conformer being about 1.8 Kcal higher in energy. According to the calculations, protonation occurs at the most negative P=0 oxygen, leading to C-P bond breaking to dimethyl phosphite and benzoyl cation. Protonation on the carbonyl oxygen gives a stable species with intramolecular hydrogen bonding between the C=0 and the oxygen of the P-OMe group. This product is higher in energy than the sum of the products' energy in the P=0 protonation by ca. 80 Kcal.

Initial calculations on the oximino derivatives show a preference for a cis arrangement with internal hydrogen bonding between the N-O-H and O-P groups. The preferred site of protonation in these compounds is also the phosphoryl oxygen atom.

Reaction mechanisms, that can accommodate the results of the quantum mechanical calculations, along with the rate differences between the various derivatives, and in particular, between the pairs of syn and anti isomers, will be presented.

REFERENCES

- Yu. A. Zhdanov, L. A. Uzlova, and Z. I. Glebova, Russ. Chem. Rev., 49, 843 (1980).
- 2. T. A. O'Brien, R. Kluger, D. C. Pine, and R. B. Gennis, Biochim. Biophys. Acta, 613, 10 (1980).
- 3. M. Sekine and T. Hata, J. C. S. Chem. Commun., 285 (1978); T. Morita, Y. Okanito, and H. Sakurai, Bull. Chem. Soc. Japan, 54, 276 (1981).
- 4. M.-C. Shih, A. Weisz, S. P.Markey, and E. Breuer, unpublished results.
- 5. K. D. Berlin and H. A. Taylor, <u>J. Amer. Chem. Soc.</u>, **86**, 3862 (1964).
- K. S. Narayanan and K. D. Berlin, <u>J. Amer. Chem. Soc.</u>, 101, 109 (1979).
- 7. K. D. Berlin, R. T. Claunch, and E. T. Gandy, <u>J. Org.</u> Chem., 33, 3090 (1968).
- 8. M. J. S. Dewar and W. Thiel, <u>J. Amer. Chem. Soc.</u>, **99**, 4899 (1977).
- 9. K. Y. B. Burstein and A. N. Isaez, Theor. Chimica Acta, 64, 397 (1984).
- 10. A. Goldblum, submitted for publication.